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The Good Old is             
The Good New Too

Gauss-Seidel, Newton-Raphson & Machine Learning
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Who can solve this system of equations?
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But, what if you 
had this problem,
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or this one.

or, this one                x = A-1b

80GB needed for storing system matrix here
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Ooops! It seems simple but nobody can do it! Well, any bold guess?

If there’s anybody here who’s got the solution to this problem, 

LEAVE THE ROOM, GET RICH, HAVE A LIFE and             
let the rest of us, losers, keep suffering!!!

You deserved it,      

providing, you’ve got x1 = 1.25, x2 = 0! If not, just keep sitting please!

Let’s see this story above geometrically i.e., in graphs.

This is known as 
CONSTRAINTS

Solve this, 
if you can?
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Before going any further, just a word 
about the terminology and concepts
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Previous example can be looked at as solving an optimization problem

The above is same as solving a system of equations

taking the derivative of J, g = ∂J / ∂x, one obtains the gradient g

For which the errors in solutions can be expressed as 

1 1 2 2 1 25 4 , 5 4e x x e x x      
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Imagine now that your problem is posed as
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This kind of tasks is what VCU’s
Learning Algorithms and Applications Laboratory (LAAL)
is trying to solve with both decent accuracy and decent CPU time.
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Contents
1.Motivations – Solving small/medium/huge system 

of linear equations with (or without) the constraints.

2.Support Vector Machines training leads to solving 
such systems with constraints

3.Gauss-Seidel is the Most Suitable

4.G-S is actually Newton-Raphson Over a   
Single Coordinate

5.Optimize Over Several Coordinates by N-R 

6.No Conclusions – Work in Heavy Progress

G-S is actually Newton-Raphson Over a  
Single Coordinate
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Motivations for this work

• No direct solution for either small/medium linear 
systems with constraints or the huge ones either with 
or without constraints.

• Such problems arise in modern machine learning (ML) 
i.e., data mining (DM) with millions of records as well 
as in almost all the other areas of modern science 
and engineering.

Definition of HUGE linear systems:

Huge = when system matrix A can’t be stored and operated   
with / on / in a computer memory

Solve Ax = b for x
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In both cases mentioned, direct 
calculations of x (either by 
Gaussian elimination, or by 

inversion, or by LU, QR, 
Cholesky i.e., by any other 

factorization) are not 
feasible/possible and we must 

resort to the iterative solutions!

Remark
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One more remark
• ML is not the first scientific field facing humongous number of equations. 

Many other areas have been doing it for decades e.g., Solving PDEs.

• What is so particular about (L1 and L2) SVM models?

– 1st system of equation is not sparse. In fact, it is always    
extremely dense. It often has a  system matrix with a 
high condition number, say > 108 i.e., system is very 
ill-conditioned

– 2nd system matrix is both symmetric & positive definite
– 3rd

• for L1 SVMs, constraints are usually box constraints  
accompanied by 1 only equality constraint

• for L2 SVMs, constraints are just nonnegative ones. 

In both cases, constraints make solution x to be sparse
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• The last three facts are very different in 
respect to the classic huge linear system of 
equations originating from PDE solving

• They exclude all the conclusions about 
what iterative method is possibly the best

• One of the basic advices was that the 
Conjugate-Gradient method is The Tool

• It is not for our very dense systems!!!

Hence, we have to invent something better, 
more suitable, for the new problem setting. 
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Welcome to the Good Old Iterative 
Methods Ready for Renewal 

• Jacobi
• Gauss-Seidel
• Successive Over Relaxation
• Steepest Descent
• Conjugate gradient
• Active-Set Approaches
• etc,…
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• Jacobi
• Gauss-Seidel
• Successive Over Relaxation
• Steepest Descent
• Conjugate gradient
• Active-Set Approaches
• etc,…

For a dense, symmetric positive definite (SPD), systems we have 
shown that actually only Gauss-Seidel and its SOR can be efficient

As for the strikings
shown, see the papers 
from Zigic-Kecman in    
2013 & 2014

as well as my Springer book, 2005 14/53

SVMs & Linear System of Equations 

• For L1-SVM, learning means solving the QP problem below

C  i  0.            These are known as the BOX constraints. 
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Matrix Notation and Geometry 
of QP Setting

arg min J = 0.5 t H  - 1t

s.t.   C  i  0, 1
0l

i ii
y




Solving a QP problem is same as finding the solution of a linear 
system of equations

subject to the very same constraints.

Matrix H is an (n, n) SPD matrix and n is a number of records.

Hα - 1 = 0    or Hα = 1

α1

α2J(α)

  C

C
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Iterative Single Data Algorithm ISDA

• Between 2002 and 2005 I have, jointly with then 
PhD students and Drs. Huang and Vogt today,
developed ISDA algorithm. We have shown that 
ISDA is actually equal to 

• 1 – SMO* without bias term, 
• 2 – Kernel AdaTron algorithm

*SMO = Sequential minimal optimization

and that all the three approaches are actually
Gauss-Seidel methods for solving linear systems 
of  equations under the given SVMs’ constraints.

*SMO, developed by Dr. Platt at Microsoft Research, is the world 
most used (i.e., the working horse) algorithm for training SVMs
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ISDA

• ISDA is quite The Algorithm, competing with and 
(often) beating the best methods for training SVMs.

• This is why in its newest releases in 2014 
MATLAB has (out of few dozens SVM 
algorithms proposed) implemented our ISDA 
(together with SMO) as the default algorithm 
for training large SVMs. 

• Check fitcsvm.m at Mathworks (MATLAB)
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• Well, it’s about what comes in next 34 slides.

• In essence, the story is as follows:                  

Zigic, Strack, and Kecman have invented and 
recently proposed a novel DL2 SVM model for 
very large ML tasks which literally cries for an 
even more efficient training algorithm than ISDA

• While searching for it, I’ve got some new 
insights which I want to share with you today

Fine, but if my students and I had already 
invented it, developed it and implemented 

it what is this seminar then about?
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The novel SVM model dubbed Direct 
L2 SVM Algorithm (DL2 SVM) boiles

down to solving this problem:

H x = 1 subject to

and, this is a very well known

NONNEGATIVE (least squares) PROBLEM
See papers from Zigic-Kecman in 2013 & 2014

  0, 1, ,ix i n
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How to solve a system of linear 

equations having huuuuuuuuuge
symmetric positive definite matrix H

and (possibly) some constraints 

???
Well, let’s go back to the



21/53

Good Old Gauss-Seidel iterative method for solving a 
system of linear equations having the SPD matrix H
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See the rewritten i-th equation fi and it’s derivative ∂fi / ∂xi below - we’ll need it soon
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Gauss-Seidel
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Start with any x = [x1 x2 x3 … xn-1 xn ]t . Usually, x = 0 !

Repeat until 
stopping 

criterion is 
satisfied
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Gauss-Seidel
Note that these system can be rewritten as

Spot the iterative scheme    xi = xi + ∆xi here

If you weren’t 
focused till now, 
start focusing, 
because it’s going 
to be very exciting
from now on
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Gauss-Seidel
Let’s rewrite the last equation as

Guys, these signs 
changes are 

EXTREMELY important 
for what we want to 
devise and show !!!

∆x

1st derivative fn’ of n-th equation in respect of xn

The n-th equation fn

This is a pure N-R !!!
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Newton-Raphson
In order to find the roots of some f(x), or for what value of x the 
function f(x) will equal zero, Newton-Raphson method proposes 
the iterative scheme below

o
n o  '

o

f ︵x ︶x = x -
f ︵x ︶

In our case f(x) = g = Hx - b and f’ = H, and when working with 
matrices division is a multiplication by an inverse. With this in mind, the 
last equation becomes

x = x – H-1(Hx - b) = x – H-1g

Writing the equation above component-wise  one would get the 
expressions on previous slide.

x

f(x)

xoxn

  '

︵ ︶
︵ ︶

f xx x
f x

xopt

Fine, but how are the G-S & N-R methods related? 
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Well, comparing slides 25 & 26 one can say that 
Newton-Raphson method, even without knowing it, 
was used for iterative solving of linear system of 
equations hidden in the Gauss-Seidel method ! It 
seems nobody has taken to much care about it?!
The reason for such a “neglect” is due to the fact that Newton, 
i.e. Newton-Raphson, method is tied with the root finding
in (a system of) NL equation(s) so deeply and strongly up

that some books on linear algebra don’t mention 
Newton-Raphson method whatsoever e.g., the book 
from 
R. Varga (on Matrix iterative methods), B. Noble, J. 
Dieudonne, S. Roman, K. Kuttler, …, and many other 
books … .                                          I can’t believe it !
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Gauss-Seidel’s & Newton-Raphson’s

G-S equals, i.e. it is, N-R!!!

xi xiopt
xi

xj

J

∆xi
xj = const

geometries when optimizing along a              coordinate 

28/53

Let’s show it analytically too! 
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Gauss-Seidel & Newton-Raphson

J = xTHx – 1Tx,
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G-S procedure must not update the variables in a 
cyclic order (starting with the 1st eq., ending with the 
last one and repeating those sweeps).

A more efficient way is to update the variable having the 
largest absolute value of a gradient vector. This cor-
responds to selecting the variable with the biggest 
absolute error.

In ML this variable is called the worst violator. Such a 
choice ensures the fastest convergence to the minimum 
value of the (hyper)quadrics J.

Gauss-Seidel & Newton-Raphson
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Gauss-Seidel & Newton-Raphson
The key proposal of the seminar is an Expansion of G-S i.e., 

N-R, over The Subspace Spanned by k Worst Violators

Remind, in each iteration step G-S updates 1 variable only!

Idea, why don’t we choose 2 worst violators/errors, or 3, 
or more, say k, and update them in a single N-R step?
In other words – why not to perform the updates as given on the 
slide 26 but written for k coordinates below

xk = xk – Hk
-1gk

Index k denotes that k worst violating variables are being updated.  
In a geometric sense, we are finding the k optimal values of x
defining the minimum of the elliptic paraboloid over a k
dimensional subspace spanned by the k worst violators. 

The Subspace Spanned by k Worst Violators

31/53

Gauss-Seidel & Newton-Raphson
What’s the geometry in a 2 dimensional subspace (k = 2) of an n-

dimensional quadrics when H is an SPD matrix.

xk1

xk 2
J2

xk2 opt

xk1 xk1opt

xk2

∆x

The two worst 
violators have 
been selected

k = 2
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xi

xj
x0

xopt

Gauss-Seidel steps

Newton-Raphson step

Gauss-Seidel & Newton-Raphson
The difference between G-S and N-R for k = 2  can be readily seen in the figure below.

Contours of the elliptic paraboloid 
over the space spanned by the 
two worst violators 
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Gauss-Seidel & Newton-Raphson
H is SPD matrix and the solution must be same for any k we 
choose, meaning accuracy must be ‘equal’ for any chosen k.

Hence, the basic issue when using k violators is the speed or, 
the CPU time needed to find the solution.

Well, there is a tradeoff here: 

An increase in k reduces the number of sweeps through the 
datasets but the calculations are more complex because:

first, instead of finding a single worst violator with a cost of
O{n}, we have to find k of them. This costs kO{n} and,

second, in each Newton-Raphson iteration step we must solve a
system of k equations which costs ~O{k3}.

At the moment we have only experimental answers which support 
using more violators. How many, hard to tell right now,  or, k = ?
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Novel Iterative Algorithm for Solving SPD 
System of Linear Equations - Pseudocode

Selection of a k-dim subspace 
over which the elliptic hyper-
paraboloid Jk is minimized.        

Only k components of vector 
x given by I are updated.

The whole gradient (error, 
residual) vector g using only k
columns of H given by I is 
updated.

g = r (residual, error) in a classic numerical algebra literature!

Note that, if starting from x=0, we don’t ever
have to calculate the huge matrix H  !!!

35/53

Novel Iterative Algorithm for Solving SPD 
System of Linear Equations

Replacing the Calculation of an Inverse of a Matrix Hk

Note that the update step

x(I) = x(I) – Hk
-1gk

can also be rewritten as 

x(I) = x(I) – ∆x, 

where ∆x is a solution of the equation 

Hk∆x=gk

and, because Hk is an SPD matrix, 

∆x can be found quicker by using Cholesky decomposition. 
This may bring a ‘significant’ CPU time speedup (up to 3 times).
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Remark on the Successive Over-Relaxation 
(SOR) 

• I am sure that the proposed model must also work 
with the SOR, which is given below. (However, I didn’t 
check it and this claim asks for some investigations). 

As always, the tricky part will be to pick up a correct value for ω!

xk = xk – ωHk
-1gk= xk – ω∆x
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Remark on the number of violators k used 

My, the very first and thus the wildest, guess is to 
pickup k according to the memory size. 

Use the highest possible k which still enables 
both the storing of the (k, k) matrix Hk and the 
calculation of the updates by performing Hk

-1gk
within the memory .
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Let’s Christen The Algorithm
There is a good habit in both all times and all civilizations which goes as:       
Soon after a baby’s born give him/her the name

Being The Very Humble Person I’ll name the approach proposed just

or just
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Let’s Position the Proposed Method i.e.,             
Let’s Compare It with Other Algorithms

Well, depending upon k, it is somewhere 
in between Gauss-Seidel and an exact, one step, solution
with the fleur of Newton-Raphson, and a scent of a Block G-S meaning

For
k = 1, it’s a pure Gauss-Seidel Method

k = n, it’s a pure N-R having a, one step, exact 
solution which is, however, prohibitive when 
dealing with huge matrices H.

1 < k < n, the proposed method is original, 
working in a k-dimensional subspace of k
worst violators, finding  there a local xk_opt in 
a single step, and iteratively approaching 
the global optimal solution xopt.

x=x–H-1(Hx-b)=H-1b

40/53

The Proposed Algorithm Falls Into the 
Category of Projection Methods such as

• Galerkin, Kaczmarz, Cimmino, G-S, Block G-S
Richardson, Southwell (these are different 
methods, but sometimes ‘equal’, i.e., similar, too) 

• Conjugate Gradient i.e. Krylov Subspace Methods
• ABS (named after Abaffy, Broyden and Spedicato), 

Row projection methods, Steepest Descent

If interested, check Brezinski’s book, “Projection Methods for Systems of Equations” North-Holland, 
1997 & Hackbusch’s, Iterative Solution of Large Sparse Systems of Equations, Springer, 1994

Block G-S is different because it works with predetermined 
blocks & it is cyclic => block G-S algorithm is entirely different 
(but similar in the spirit). For its cyclic nature, I expect it to be 
much slower too. Note also that block G-S (usually) assumes 
knowing the whole matrix H
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are finally in order - for linear systems without constraints
(the solution vector xopt is dense) and for different both

sizes                                  
from  n = 100   to   n = 10,000

&

condition numbers                      
from  ~2   to 108

Experimental Results
newtonraphson_iterat_lin_system.m, ω = 1
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Gauss-Seidel & Newton-Raphson i.e., the Proposed Method in 
k-dimensional subspace of k worst violators (coordinates) 

Some experimental runs

n = 100
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Some experimental runs

n = 500

Gauss-Seidel & Newton-Raphson i.e., the Proposed Method in 
k-dimensional subspace of k worst violators (coordinates) 
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Some experimental runs
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Some experimental runs

10
1

10
2

10
3

10
4

10
5

10
6

0

100

200

300

400

500

600
Number of Sweeps

 

 
GS=NR1
NR2
NR3

NR4
NR5

10
1

10
2

10
3

10
4

10
5

10
6

0

20

40

60

80

100

120

140

160

180
Computing Times

 

 
GS=NR1
NR2
NR3

NR4
NR5

Matrix Condition Number Matrix Condition Number

n = 2,500

Gauss-Seidel & Newton-Raphson i.e., the Proposed Method in 
k-dimensional subspace of k worst violators (coordinates) 

46/53

Some experimental runs

n = 4,000

Gauss-Seidel & Newton-Raphson i.e., the Proposed Method in 
k-dimensional subspace of k worst violators (coordinates) 
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Some experimental runs
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Gauss-Seidel & Newton-Raphson i.e., the Proposed Method in 
k-dimensional subspace of k worst violators (coordinates) 
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Some experimental runs. Note, here we have k = 25 too

n = 5,000
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Some experimental runs

n = 10,000
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Basic Remarks and Comments
1) Solving LARGE systems is possible only with iterative algorithms

2) All the results shown are WITHOUT CONSTRAINTS, hence, no 
sparseness in a solution vector x whatsoever

3) Results may be different for SVM tasks or, when solving any other linear 
system of equations with constraints

4) It is highly recommended to use more violators. Value of k is ???

5) The bigger the system, the higher the speed up

6) The proposed method using k worst violators, is the strongest candidate 
method for HUGE SVM classification tasks, i.e. HUGE linear system of 
equations with nonnegativity, and other, constraints

7) Whether the last claim is true is under an investigation for DL2 
SVMs by LAAL’s PhD student Ljiljana Zigic

8) Warning – implementation of a proposed method when having constraints is 
a particularly challenging research task because   

There Is No King’s Way to Algorithms Implementations Either 
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10) Sure, the  proposed algorithm shown here for a linear system   
can also (but, for issues of convergence, with a lot of caution)
be applied for a system of nonlinear equations as follows:

do the Gauss-Newton algorithm along the lines of the 
pseudocode for the proposed method on the slide 35, meaning 
don’t build Jacobian for all F(x). Go in chunks of k. It may be 
faster, but be aware that the proposed method converges 
because our linear system is a symmetric positive definite one. 

With nonlinear systems there will be many additional issues 
and convergence is generally not quite guaranteed!

Basic Remarks and Comments
9) I didn’t check it, but I believe that the algorithm on slide 35     

converges whenever the G-S does. Hence, the question 
whether a symmetry and positive definiteness is required
for a proposed method should be investigated in more details.
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Wait, wait, wait!
• This is not the end of the story yet !!!
• This was just what I was doing lately.    Vojo’s stuff!    So, forget it !

• The Very Big and The True Story of The Day Is
– each of you is facing some problem you have to solve
– look at it, see what is in the very root of your problem
– find out was there anybody else who was facing it, or who was doing similar 

stuff (remind, this is a heavy digging)

• If there is nobody, check it twice. After checking it 2nd time, check it one more 
time (I mean, check it indeed) just to be sure. (As for me, I believe, your 
problem, possibly disguised, has already been solved).

• If, after all the thorough checking, there was nobody who was entertaining your 
problem, think about your problem again

– Is it right?
• Is it properly posed?

– Is it novel?
» Is your advisor ‘pleased’ about your PhD topic?

• If All the Answers are Positive You Are at the Blessed Spot!  
The Whole Big World is Waiting for Your Solutions

and The Fame Is in Front of You!!!
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You won’t believe it, but this is the last slide !!!
Thanks!




